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1 Introduction

Nowadays, an increasing number of websites, such as SourceForge.net1 and various
widget sharing websites, allow software developers to share code with other people
on the Internet. Downloading software from these websites contains a risk as the
software may not work as expected or it may be malicious, e.g., contain a computer
virus. Up to now, few of these websites provide decision support mechanisms for
determining the nature of widgets beforehand.

This situation can be improved by employing a so-called reputation system, a com-
putational mechanism that collects and aggregates feedback information from users
and distributes reputation information to other users. Due to the potential risks
involved in download decisions, it should be ensured that a reputation system works
as expected before it is deployed to a real system.

A possible way to verify that the system works properly is to use multi-agent simula-
tions. Multi-agent simulations have been previously used to study the effectiveness
and efficiency of reputation systems in other domains, such as e-commerce [Del03,
Nur07], peer-to-peer systems [GJA03, YSS04], or mobile ad-hoc networking [BLB02].
However, the widget sharing domain differs from these domains in two ways: (i) the
risks involved in decision making are not directly measurable, because widgets, as
transaction objects, have no monetary value and the harm of malicious widgets is
not predictable; and (ii) on widget sharing sites, "sellers" (developers) provide wid-
gets and "buyers" (users) act as consumers of the virtual products, thus, there are
no direct interactions between users and developers.

This thesis aims to analyze the effectiveness of reputation systems in a simulated
widget sharing community. In this thesis, a custom scenario is proposed to represent
a real widget sharing website. Within this scenario, a reputation system is regarded
as effective, if it can distinguish the good widgets from the malicious ones, i.e., reward
the good widgets and their developers with more download transactions and penalize
the malicious widgets and their developers with less downloads. The effectiveness of
different reputation systems are examined and compared by simulation. The idea is
to evaluate to which degree the systems can stand the attacks from different kinds
of misbehaving developers and users. To ensure that the experiment results are
realistic, we refer to empirical data collected from a real widget sharing website for
our simulation setup. In the experiment results, the author illustrates the maximum

1http://sourceforge.net/ [Retrieved: 2009-09-04]
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amount of dishonest developers or users at which the reputation systems can resist.

The rest of this thesis is organized as follows. Section 2 draws research questions
of this work and provides background information on the concepts used through-
out the thesis. Section 3 surveys the state of the art of reputation systems and
Section 4 reviews different multi-agent simulation techniques. Section 5 describes
our simulation setup. Section 6 describes the experiments that are conducted to
evaluate various reputation systems and discusses the strengths and weaknesses of
the reputation systems. Section 7 summaries the contributions of this thesis and
discusses limitations of this work.
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2 Reputation Management in Widget Sharing Com-

munities

This thesis work seeks to improve trust between users and developers in widget shar-
ing communities in accordance with reliable reputation information about widgets
and developers. This research objective leads us to consider two problems that will
be studied in this thesis:

1. Build a simulation environment to model a real world widget sharing commu-
nity.

2. Evaluate the effectiveness of different reputation systems within the simulated
widget sharing community.

This section provides background information concerning widgets and widget shar-
ing websites (Section 2.1), trust and reputation (Section 2.2), reputation system
(Section 2.3) and multi-agent simulation (Section 2.4), as well as the connections
between these concepts.

2.1 Widget and Widget Sharing Websites

The notion widget, a combination of window and gadget, was born with the invention
of the graphical user interface (GUI) and it was first used to name user interface
elements during Project Athena in 1988 [AM90]. Originally, widget was used to
refer to an element of GUI that displays changeable information arrangements, such
as a window or a text box. Following years of development, desktop widget, a
closely related concept, has emerged to describe small specialized GUI applications
that provide visual information and easy access to computing functions like clocks,
calendars, calculators and small games. Another related concept is the web widget,
a user interface element that can be inserted into webpages to show web contents,
such as news headlines, weather forecasts or Wikipedia articles.

In this thesis, a widget is referred as an interactive application for displaying and/or
updating local data or data on the Web, packaged to allow a download and instal-
lation on a user’s machine or mobile device [CP09]. This definition covers both
desktop and web widgets, but not GUI widgets. Widgets can be classified into var-
ious categories, e.g., news, weather sites, currency or unit converters, CPU gauges,
dictionaries and games [BNF+08].
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Figure 1: A timeline modified from Niall Kennedy’s widget timeline9shows the
launch time of several widget sectors starting from 2003. The years 2005 and 2007
saw a bloom of widget sectors.

Widgets, especially desktop widgets, are typically hosted by a widget engine. Ex-
amples of widget engines include a JavaScript runtime engine called Konfabulator
and Dashboard, a platform that allows users to place widgets on the Mac OS X
desktop. Many browsers and widget engines are linked with online widget sharing
websites that allow users to download new widgets. Examples of widget sharing
websites or communities include Dashboard Widgets2, Yahoo! Widgets3, Windows
Live4, Google Gadgets5, Widgipedia6, Widgetbox7 and Nokia WidSets8. Figure 1
shows the history of widget platforms and online widget sharing websites that have
been launched since 2003.

Figure 2 illustrates the main page of a widget sharing website, Yahoo! Widgets,
which acts as a platform to connect people who want to share codes with others
(developers) and those who like to download and use widgets (users). Links that
lead widget users to Find Widgets and guide developers to Create Widgets are shown
in the navigation bar on the top of the webpage. The main body of the webpage
contains various parts, such as Widgets Exhibition, Search Bar, Lists of Widgets and
Widget Categories, which can help users to find widgets that meet their potential

2http://www.apple.com/downloads/dashboard [Retrieved: 2009-09-01]
3http://widgets.yahoo.com [Retrieved: 2009-09-01]
4http://home.live.com [Retrieved: 2009-09-01]
5http://www.google.com/webmasters/gadgets [Retrieved: 2009-09-01]
6http://www.widgipedia.com [Retrieved: 2009-09-01]
7http://www.widgetbox.com [Retrieved: 2009-09-01]
8http://www.widsets.com [Retrieved: 2009-04-20]
9http://www.niallkennedy.com/blog/timelines/widgets/ [Retrieved: 2009-08-27].

10http://widgets.yahoo.com/ [Retrieved: 2009-11-18].
11http://widgets.yahoo.com/tools/ [Retrieved: 2009-11-18].
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Figure 2: Screenshot of the main page of Yahoo! Widgets10, a widget sharing
website. The webpage provides a navigation bar with links that help widget users
to Find Widgets and guide developers to Create Widgets. The main body of the
webpage contains Widgets Exhibition, Search Bar, Lists of Widgets and Widget
Categories, to improve the accessibility to widgets of user interests.
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Figure 3: Screenshot of a webpage11providing tutorials and tools for widget develop-
ers. This webpage also contains a link that guide developers to submit their widgets
to the website.
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needs. The Widgets Exhibition shows generic information about new widgets, e.g.,
widget’s name, developer, rating, picture, description and a Get it! button for
user to download the widget. Users can also search for widgets with key words in
Search Bar ; reach, for instance, new widgets via Lists of Widgets ; or select a certain
kind of widgets within Widget Categories. For developers, by clicking the Create
Widgets link, both tutorials and tools needed for building and submitting widgets
are available in the website; see Figure 3. Figure 4 demonstrates a detailed view of
Yahoo! Weather, an example of the existing widgets, shown in Yahoo! Widgets.

2.2 Trust and Reputation

Trust and reputation have received considerable attention within various scientific
disciplines, such as psychology, sociology, philosophy and economy; see [MM02,
SS05]. Thus, it is not surprising that various definitions of reputation have been
given and none of them has received widespread acceptance [MMH02]. Moreover,
the term reputation is often mixed up with another concept, i.e., trust [ARH00].

Trust is defined as a subjective probability assessed by an agent that another agent
or group of agents will perform a particular action or decision, before the agent can
monitor such an action [Gam88]. The assessment is based on the risks, benefits and
reputations of the agents involved in the situation. Reputation, on the other hand, is
defined as the collected and processed information about an individual’s past behav-
ior as experienced by others [SVB06]. Accordingly, trust is a subjective judgment
that is based on various factors or evidence, but reputation is a collective measure
of trustworthiness or reliability based on the referrals or ratings from members in
a community [JIB07]. In decision making, personal experience, i.e., trust, usually
carries more weight than second-hand referrals, i.e., reputation. However, if direct
experiences are lacking, especially when a trust relationship is initialized between
both parties, decision making has to be based on referrals from others [RK05].

2.3 Reputation System

A reputation system is a computational system that collects, distributes, and aggre-
gates feedback information about individuals’ past behavior [RKZF00]. Reputation
systems are applied to provide an incentive for honest behavior and to help people

12http://widgets.yahoo.com/widgets/yahoo-weather [Retrieved: 2009-11-18].
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Figure 4: A detailed view of the widget Yahoo! Weather 12with information of the
widget and feedback elements, such as average rating, number of ratings, number of
downloads, and reviews.
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make decisions about who to trust. For example, on Amazon.com, consumers can
rate the products from 1 (least satisfied) to 5 (most satisfied) and the average of
ratings a product received is regarded as the reputation value of the product. Some
widget sharing websites, like Yahoo! Widgets, have adopted this kind of reputation
systems as well. In Yahoo! Widgets, users are informed about whether a widget
is trustworthy or not in terms of average rating in a five-star scale and number
of ratings; see Figure 4. This adoption of reputation systems in widget sharing
communities can be regarded as a possible solution to provide users the reputation
information about widgets. However, Hu et al. [HPZ06] argue that the average score
of a product in Amazon.com may mislead the consumers if the reputation of the
product fails to reveal the product’s true quality. There also remains a question
mark about whether the reputation systems applied in widget sharing communities
can effectively guide users to download trustworthy widgets or not.

To this end, we have to review different kinds of reputation systems that can be
applied in widget sharing communities (Section 3) and compare their effectiveness
in providing users reliable reputation information about widgets and encouraging
the users to download good widgets. However, it is impossible to simply replace one
reputation system with another one and compare several different reputation systems
within one real website, because the tests can cost a large amount of workload on the
website side and cause confusion due to inconsistent reputation information offered
to the user side. To evaluate and compare the effectiveness of various reputation
systems in a widget sharing scenario requires a reasonable solution. Thus, we refer
to computer simulation.

2.4 Using Multi-Agent Simulation for Comparison Study

Computer simulation attempts to model a real-life or a hypothetical situation in a
computational way so that it can be studied and understood [RRH00]. Computer
simulation is a powerful tool that allows us to stay with a problem and choose
the best alternative by providing a way in which various designs, plans and/or
policies can be evaluated without having to experiment on a real system, which may
be prohibitively costly, time-consuming, or simply impractical to do. For example,
reputation systems should be evaluated using simulation before being put into actual
use, because to examine reputation systems in a real system causes potential risks,
e.g., possible monetary loss, to participants, if they make their decisions based on
incorrect information generated by reputation systems.
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Basic computer simulation alone, however, cannot model all the real world systems
that are needed for the study of reputation systems. Demands from certain aspects,
like modeling of intelligent human behavior in widget sharing communities, are
beyond the control of standard simulations. To this end, a multi-agent mechanism
provides a way to model the human behavior by abstracting the individuals into
computer agents that are assigned with pre-defined behavior models.

Multi-agent simulation is a multi-agent based model concept that combines a multi-
agent mechanism (Section 4.1) with a simulated environment in virtual time. In
multi-agent simulation, active entities are modeled as agents who live in an en-
vironment consisting of other agents, and environmental or physical objects, such
as resources, are modeled as entities. The key point of multi-agent simulation is
interactions between agents who autonomously make decisions according to their
pre-defined behavior models [DF94].

In our work, we consider multi-agent simulation to provide the possibility of di-
rectly representing individuals (as agents) and their behavior during interactions in
a computerized form. For instance, individuals are directly represented in the form
of agents, i.e., users and developers in a widget sharing community, characterized
by different behavior models. An agent can make its own decision when interacting
with other agents, and the behavior model of the agent belongs affects its decision
making process; see Section 5.2. Thanks to the flexibility and capability for the
integration of multi-agent simulation, we are able to set up our simulation using:

1. differential equations, i.e., metrics in the reputation systems (Section 3.4);

2. quantitative variables, i.e., simulation parameters (Section 5.4); and

3. qualitative parameters, i.e., individual behavior (Section 6.1.1).

These variables integrated in the multi-agent simulation enable the comparison of
effectiveness of different reputation systems. In this thesis, a reputation system
employed in a widget sharing community is regarded as effective, if it can distinguish
honest widgets from malicious ones and encourage users to download trustworthy
widgets. We return to this topic in Sections 5 and 6 with more details about the
simulation setup and the evaluation of reputation systems.
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3 Reputation Systems

In order to provide users reliable reputation information about widgets, reputation
systems are considered to be deployed in widget sharing communities. Section 3.1
describes dimensions for classifying reputation systems, and Section 3.2 covers the
notation used in metrics in reputation systems. Section 3.3 reviews reputation sys-
tems that have been presented in previous work and illustrates several quantitative
metrics, which act as the foundation of this comparison study of reputation systems.
Section 3.4 summarizes the characteristics of the reviewed systems.

3.1 Classification Dimensions

Research of reputation systems under different conditions makes it a bit difficult
to distinguish them using a single dimension. Considering the characteristics of
reputation systems, we adopt two classification categories: information sources and
visibility types, from [SS05].

Information Sources The information that a reputation system uses to estimate
the reputation of an agent can originate from different sources, such as direct expe-
riences, witness information, and information related to the sociological features of
agents’ behavior [SS05].

Direct experiences are based on agents’ direct interactions with their partners, and
are considered the most relevant and reliable information source for a reputation
system.

Witness information, also known as word-of-mouth or indirect information, is the
information collected from other members of the community. For an agent, the
information can come from its direct experiences or from others. Witness informa-
tion can be replaced with direct experience, if the latter is reliable enough for a
reputation model. It should also be taken into consideration that witnesses may
manipulate or hide information to their own benefit.

Sociological information is based on the social relations between agents and the
social status of these agents. The social relations between agents in a multi-agent
system represent the complex relations between their human counterparts in real
world situations. For instance, in a real community, an individual can play one
or more roles, e.g., a buyer and/or a seller, in the community. Additionally, each
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one can establish different kinds of relations with others, e.g., dependence, trade,
competition or collaboration. The roles the individual plays and the relations (s)he
has in the community can affect his or her behavior and the interaction with other
individuals.

Visibility Types This classification dimension refers to how an agent’s reputation
is visible to all agents within a community. A reputation system is a global system
if an agent’s reputation is regarded as a global property accessible to all agents in
the community and the agent has only one single reputation value. Alternatively, a
reputation system is regarded as a local system, if an agent’s reputation is viewed
as a property evaluated by each agent and an agent has different reputation values
depending on the requesting agent who queries the reputation value.

Within a global/centralized reputation system, the reputation value of an agent is
calculated from the opinions of agents who interacted with the agent in the past.
This reputation value is accessible to all members of the community and updated
whenever a member submits a new evaluation for an agent. Local reputation sys-
tems, also called personalized reputation systems, provide different reputation values
for different groups of agents [MMH02]. Each agent assigns a personalized reputa-
tion value to each member of the community according to its direct experiences,
witness information or other sociological information. In other words, an agent’s
personalized reputation is more about its reputation from another agent’s point of
view.

3.2 Common Notation for Metrics in Reputation Systems

The classification dimensions discussed in the previous section provide the possibility
to analyze reputation systems in a qualitative way. However, the study of reputation
systems also requires quantitative metrics that can benefit further evaluation of
reputation systems using simulation. To enable the abstraction and comparison of
the core metrics in different reputation systems, the notation presented by Schlosser
et al. [SVB06] is adopted. This section covers the basic notation used throughout
the survey of reputation systems in Section 3.3.

The set of agents is denoted using A, and the context of a transaction is written as
C. T = {0, 1, ..., tnow} is the set of times. E denotes the set of encounters between
different agents that have happened till now. An encounter consisting of information
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about the peers in the context of the transaction is written as:

E = {(a, b, c) ∈ A× A× C|a 6= b}. (1)

A rating denoted as ρ(a, e) represents a mapping between a target agent a ∈ A and
an encounter e ∈ E to the set of possible ratings Q :

ρ(a, e) : A× E → Q. (2)

The set of ratings Q has various shapes, e.g., QeBay = {−1, 0, 1} or Qi = [0, 1].

The subset of all encounters in which an agent a ∈ A has completed a transaction
and received a rating is

Ea := {e ∈ E| (e = (a, ·, ·) ∨ e = (·, a, ·))} . (3)

The time-sorted list of Ea is defined as Ea.

The set of all encounters between agent a ∈ A and agent b ∈ A with a valid rating
for the agent a is

Ea,b := {e ∈ Ea| (e = (a, b, ·) ∨ e = (b, a, ·))} . (4)

An encounter between a and b at a given time t is written as eta,b ∈ Ea,b. The
operator # denotes the size of a set of a list.

The reputation of agent a ∈ A is a mapping between the agent a and time t ∈ T .
The most recent reputation value of the agent a is shown as r (a) := r (a, tnow).

Table 1 summaries the notation that allows the abstraction of specific metrics from
different kinds of reputation systems that are studied in our simulations. More
specific notation is represented when it is encountered the first time.

3.3 Survey of Reputation Systems

This section reviews previous work on reputation systems from both qualitative
and quantitative perspectives. The reputation systems are grouped according to
their different ways of computing reputation, and the emphasis is on the operative
mechanisms of these systems. Different kinds of systems are described using the
notation represented in Section 3.2, excluding implementation related aspects, such
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Table 1: A summary of the notation that is used in the metrics in reputation systems.

Symbol Description

A The set of agents

C The context of a transaction

T The set of times (t0, t1, ..., tnow)

E The set of encounters

Q The set of ratings

ρ(a, e) A rating for a mapping between a target agent a and an

encounter e to the set of possible ratings Q

Ea The subset of all encounters E in which an agent a has

completed a transaction and received a rating

Ea The time-sorted list of Ea

Ea,b The set of all encounters between agent a and agent b

with a valid rating

eta,b An encounter between a and b at a given time t

# The size of a set of a list

r(a) The most recent reputation value of agent a
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as the flow of information or the location of processing and storage of data. To
describe them in a simple way, the systems will be analyzed excluding the value of
a transaction.

3.3.1 Accumulative Systems

The reputation systems that calculate the reputation of an agent as the sum of all
given ratings are called accumulative systems. One of the representatives of the
accumulative systems employed in online marketplaces is the eBay system, which
informs buyers about whether potential trading partners are trustworthy or not,
and aims at making chiseling and cheating rare. The reputation mechanism used
in eBay13 is based on ratings given by both trading parties (i.e., buyers and sellers)
after a transaction has been completed. The possible ratings are 1 (positive), 0
(neutral) and -1 (negative), and the overall reputation value of an agent a ∈ A is

r (a) =
∑
e∈Ea

ρ (a, e) , (5)

which is a sum of all ratings given to the agent [SVB06].

The eBay system uses the reputation of a user as a single value, which is collected
and computed from the available feedback information [SS05]. Witness information
coming from other agents who previously interacted with the target agent is the
main information source to form the reputation of the agent.

In accumulative systems, an honest agent can benefit from its good behaviors in
the way that the more often it behaves well, the higher reputation it earns. On
the other hand, dishonest agents may give their partners some false or biased rat-
ings, to which the accumulative systems are vulnerable [Nur07]. To overcome the
negative effects caused by false or biased information, the reputation value should
be calculated using a large enough number of opinions or ratings. In this way, the
accumulative systems can ignore some of the bad ratings that an agent has received,
if the agent makes enough good transactions in the future. Another disadvantage is
that the accumulative systems allow an agent to behave badly in a certain amount of
transactions and still to improve its overall reputation, if the fraction of bad ratings
gained from bad behaviors is small enough.

13http:\\www.eBay.com [Retrieved 2009-09-04]



16

3.3.2 Average Systems

In average systems, the reputation for an agent is computed as the average of all
ratings that the agent has received. The average value is regarded as the global
reputation of the agent. Agents can use the set of ratings, i.e., {−1, 0, 1}, to rate
their interaction partners. The reputation of an agent a ∈ A is calculated using

r (a) =

∑
e∈Ea

ρ (a, e)

# (Ea)
. (6)

In average systems, agents are assumed to behave in the same way for most of their
lifetime. As unusual ratings are given little weight in the computation, they only
have little effect on the final reputation. This weakness might be used by some
malicious agents to intentionally issue bad transactions.

One example of average systems is the Jurca and Faltings system [JF03]. In this
system, a group of broker agents, also called R-agents, buy and aggregate reports
from other agents and sell back reputation information to agents when they need
it. Each R-agent collects and aggregates reputation reports in a centralized way,
though the agents are distributed in the reputation system. Reputation reports are
limited to the values 0 and 1 so that the value 0 represents cheating agents and value
1 represents honest agents. The reputation value of an agent is derived by averaging
all reports that concern the agent. A payment scheme for reputation reports is
introduced into the reputation system to encourage agents to report truthfully about
their interactions’ results. According to the scheme, agents who report incorrectly
have to pay an amount of money as a punishment for cheating during the process of
selling reports and buying reputation information, while honest agents will not lose
money. Thus, the reputation mechanism makes it rational for an agent to report its
observations honestly.

Another example is the Yu and Singh system [YS02]. To manage reputation in
e-commerce, Yu and Singh developed a reputation system that considers an agent’s
reputation as an average value of all the ratings the agent has received. The rep-
utation system is implemented within a distributed agent architecture, and the
Dempster-Shafer theory of evidence [GS90] is applied to represent and propagate
ratings that agents give to each other. When examining the trustworthiness of a
given partner, a peer combines its local evidence, which is based on direct prior
interactions with the partner, with testimonies of others regarding the same part-
ner. Direct experiences are considered as the primary source for determining the
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reputation of the target agent, and only when direct experiences are not available,
the system refers to witness information. One disadvantage found in the Yu and
Singh reputation system is that it does not fully protect against spurious ratings
generated by dishonest agents, because all agents are assumed to behave honestly
and always give fair ratings.

3.3.3 Blurred Systems

Huynh et al. [HJS06] design a blurred system by combining reputation, context-
based rules, and credentials in an agent system. This feature enables the blurred
systems to provide a reputation metric with an unspecified time-dependent weight-
function, where old ratings lose their influences on the current reputation over time.
It is assumed that there is a high possibility that agents behave more like they did
in their most recent transactions than they did in the long ago past. Based on this
assumption, this metric can monitor the changes of agents’ behaviors during their
lifetime. The reputation of an agent a ∈ A is

r (a) =

#(Ea)∑
i=1

ρ
(
a,Ea [i]

)
#
(
Ea
)
− i+ 1

. (7)

The blurred systems use {−1, 0, 1} as the set of possible rating values. Multiple
ratings from the same agent are always considered. This mechanism may cause the
problem that agents in the same group can manipulate their reputation values by
giving each other high ratings, though low weights are assigned to old ratings.

Carter et al. [CBG02] study the blurred systems by identifying a set of roles within
an information-sharing community where agents attempt to exchange relevant in-
formation with each other to satisfy other agents’ requests. The reputation of an
agent is based on the degree of fulfillment of roles. If agents have fulfilled their
roles and get approved by the community, they are rewarded with a positive reputa-
tion, otherwise they are punished with a negative reputation. The reputation given
to the agents measuring their performance in different roles is context dependent,
which means the reputation defined in one community is not applicable in other
communities that have different sets of roles. There is no universal way to calculate
reputation for all communities. An agent’s reputation is calculated as a weighted
sum of the degree of satisfaction of each role. The weights are decided according to
the specific community. The reputation value for each agent is calculated using a



18

centralized mechanism so that the global measure can be observed by all members
of the community.

Schlosser et al. [SVB06] proposed a system that weights the ratings in a quadratic
way to give recent ratings more power on the reputation. The purpose is to make
the system stand agents who try to behave honestly to build a high reputation in
the beginning and switch to a malicious behavior until their reputation gets too bad.
This so-called BlurredSquared system calculates the reputation of an agent a ∈ A
as

r (a) =

#(Ea)∑
i=1

ρ
(
a,Ea [i]

)
(#
(
Ea
)
− i+ 1)2

. (8)

An extreme case of the blurred systems is the OnlyLast system, studied by Dellaro-
cas [Del03]. It is assumed that an agent behaves like it did the last time, no matter
what it did before. Based on the assumption, only the most recent rating given to
an agent is considered, and the reputation of an agent a ∈ A without consideration
of transaction values is calculated using

r (a) = ρ
(
a,Ea

[
#Ea

])
. (9)

3.3.4 Beta System

The Beta reputation system, proposed by Jøsang and Ismail [JI02], is designed in the
purpose of predicting statistically an agent’s behavior in its next transaction. The
system evaluates the data about an agent’s previous transactions and derives the
probability of whether the agent behaves good or bad. Two variables, the share of
good (r) and bad (s) transactions an agent made in the past, are used as parameters
for the Beta-distribution, the expectation of which shows the future behavior of the
agent. They are computed as

ra =

#(Ea)∑
i=1

λ#(Ea)−i·(1+ρ(a,Ea[i]))/2, (10)

and
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sa =

#(Ea)∑
i=1

λ#(Ea)−i·(1−ρ(a,Ea[i]))/2. (11)

The reputation of an agent a ∈ A is calculated as

r (a) =
ra − sa

ra + sa + 2
, (12)

where 0 ≤ λ ≤ 1.

According to the metric, the Beta probability density function (PDF) acts as the
mathematical basis for computing ratings. The system takes positive or negative
ratings as input values. The updated reputation values, also called posteriori repu-
tation values, are computed by combining the previous reputation value with new
ratings. Possible ratings are real numbers between -1(negative) and 1 (positive). By
evaluating the reputation values concerning previous transactions, the reputation
system derives the probability that an agent will behave good or bad in the next
transaction. The share of good (r) and bad (s) transactions is calculated to show the
agent’s performance in the past, e.g., r = 0.5 and s = 0.5 means the agent behaves
in a neutral way. These two variables are parameters for the Beta distribution that
can be used to calculate the expected probability of the agent behaving in a certain
way in the future.

The Beta system is a global/centralized system from the point of view of visibility
types; see Section 3.1. In terms of information sources, both direct information and
witness information are used for the evaluation of agents’ previous performance, and
are the basis of the prediction of an agent’s future behavior.

3.3.5 Adaptive Systems

Sporas and Histos Sporas, proposed by Zacharia et al. [ZMM00], is a reputation
system based on the following principles:

1. The reputation value of a user is never lower than the reputation of a new
user.

2. Users with very high reputation values experience smaller rating changes than
users with a low reputation.
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3. When two users interact more than once, only the most recent rating between
them is considered.

The Sporas system adopts a computational method from the Glicko system [Gli99],
an approach used to evaluate the player’s relative strengths in pairwise games, for
measuring the reliability of users’ reputation based on the standard deviation of
reputation values.

The Sporas system is more robust to users’ behavior changes and the reliability
measures make it easier to interpret the reputation values. The major limitation
of Sporas is that all new users are discriminated in the system, i.e., the reputation
values of any existing users are always strictly higher than the reputation value of
a beginner.

The Sporas system provides a global reputation value for each member of a com-
munity, whereas the Histos system is designed to provide a personalized reputation
value [ZMM00]. The information sources in Histos include direct information and
witness information. In this reputation system, direct experiences refer to the most
recent experience with the agent that is being evaluated.

Zacharia et al. represent pairwise ratings using a directed graph. Similarly to the
TrustNet of Schillo et al. [SFR00], in the directed graph the nodes represent agents
and the edges refer to the most recent reputation rating given by an agent to another.
The agent owning the graph is shown as the root node. In Histos, reputation values
of agents are calculated recursively. The reputation of an agent on level Lx (x > 0)
of the graph is calculated as a weighted average of the ratings that agents on level
Lx−1 provided to the agent. The weights come from the reputation values of the
agents who rate the target agent. Thus, an agent’s reputation value is equal to the
rating it has received if the agent is directly rated by the graph owner.

In Histos, the reputation value is context independent and no special mechanisms are
offered to deal with dishonest agents. Another drawback of this reputation system
is that it measures the reliability of a witness based on his or her reputation value.
For example, one agent acting honestly as a seller or buyer does not mean it will
not hide or provide biased information as a witness.

ReGreT System ReGreT [SS02] is a reputation system in which agents them-
selves evaluate reputation in a decentralized way. In ReGreT, each agent has the
capability to evaluate the reputation of other agents. An agent rates its partner’s
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performance after every interaction and the ratings are recorded in a local database.
The relevant ratings can be fetched from the database during the evaluation process
if needed. The reputation value is derived from these ratings and calculated as the
weighed mean of all ratings concerning agents’ direct experiences. Each rating is
weighed according to its recentness, e.g., a more recent rating is weighted more than
those that are less recent.

ReGreT takes into consideration the possibility of incorrect reports from dishon-
est agents. Similar to Sporas, ReGreT uses a reliability value that represent the
predictive power of each reputation value. The reliability value is calculated using
two measures: the number of ratings used in calculating a reputation value and the
deviation of these ratings.

ReGreT incorporates all of the information sources, i.e., direct experiences, witness
information and sociological information, discussed in Section 3.1. Based on the
assumption that agents are willing to share their opinions about one another, Re-
GreT provides a witness reputation component involving a method for aggregating
witness reports, which also takes into account the possibility of dishonest reports.
The component operates on the social network built up by each agent to find wit-
nesses, to choose which witnesses to be inquired, and how to weight the witnesses’
reports. However, the way to form such social networks is not explained in [SS02].
ReGreT also refers to sociological information, such as neighborhood reputation and
system reputation, as source of information to decide an agent’s overall reputation.
The neighborhood reputation is calculated from the reputation of the target agent’s
neighbor agents based on fuzzy rules, which also requires a social network to work.
The system reputation is a default reputation value assigned to the target agent
based on its social role in an interaction, e.g., a buyer or a seller.

Perseus System Perseus [Nur07] is a personalized reputation system that aims
to overcome the problems existing in most centralized systems for online market-
places. One example of the problems is that agents can behave honestly in the very
beginning, but they may later abuse their high reputation and act dishonestly if
they know their reputation. In Perseus, an agent’s reputation depends on the agent
who queries it. The reputation value is computed taking into account two informa-
tion sources: first hand reputation, i.e., personal direct experiences, and third party
reputation, i.e., witness information. The direct experiences act as the main source
of information, whereas witness information are used when agents have no interac-
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tion history. These two reputation values are aggregated into a single value using
a weighted linear sum, and the weights of the linear sum, called coefficients, are
updated over time using a stochastic approximation algorithm. The approximation
algorithm increases the coefficient for a particular source towards one whenever the
reputation source and the rating agree, and respectively, the coefficient is decreased
towards zero when a disagreement about the rating and the reputation source hap-
pens. To this end, the Perseus system, together with the Sporas system and the
ReGreT system described above, can be regarded as an example of adaptive repu-
tation systems.

In the Perseus system, the possible ratings an agent may receive from others are
{−1, 0, 1}. The reputation value of an agent a is a combination of two estimates:
the first hand reputation (personal experiences) and third party reputation (witness
reports) [Nur07]. The two variables can be denoted as γta,b for the first hand repu-
tation of agent a from the point of view of agent b after t transactions, whereas φta,b
for agent b’s view of the third party reputation of agent a. The first hand reputation
γta,b is computed using a stochastic approximation algorithm [STA05]:

γta,b = γt−1
a,b + α

(
ρ
(
a, eta,b

)
− γt−1

a,b

)
, (13)

where α = max

[
1

t
, 0.001

]
.

The third party reputation of agent a is calculated using the average sum of ratings
from agents that are considered trustworthy, i.e.,

φta,b =
1

#T

t∑
i=1

(
γia,b
)
. (14)

Perseus uses a weighted linear sum to aggregate first hand and third party reputation
to compute the trustworthiness of agent a from the point of view of agent b, which
is

r (a) =
π1

π1 − π2

γta,b +
π2

π1 − π2

φta,b. (15)

Here, π1 and π2 are weights for first hand and third party reputation respectively.
According to rules described in Section 3.3.5, each coefficient πi (i = 1, 2) is updated
using
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πt+1
i = πti +

β (1.0− πti) if agree

β (0.0− πti) if disagree
, (16)

where β is the step size.

3.4 Summary

The reputation systems described in the previous section are summarized in Table 2
from the point of view of the classification dimensions discussed in Section 3.1. The
rating scale is also considered as one of the characteristics of reputation systems.
These systems are grouped according to different types of metrics they use.

It is important to note that though two classification aspects are described to allow
comparing different reputation systems, these classification dimensions do not always
capture differences with the reputation systems. In some cases, the classification
for a specific reputation system in one or another category is subject to our own
understanding. There are also other classifications that can be used to categorize
reputation systems (see, e.g., [SS05]), but these two dimensions are closely related
to the scope of our study.
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4 Multi-Agent Simulation of Reputation Systems

As discussed in Section 2.4, real world systems can be modeled and observed us-
ing multi-agent simulation. In order to learn how to form a specific simulation
environment for evaluation of reputation systems, this section reviews the multi-
agent approach (Section 4.1); the ART testbed, especially the multi-agent simu-
lation framework (Section 4.2); and simulation scenarios developed for studies of
reputation systems in different domains (Section 4.3).

4.1 Multi-Agent Approach

The multi-agent approach is considered a combination of several disciplines, of which
the two most important ones are distributed artificial intelligence (DAI) and artificial
life (AL). The work of DAI started in the United States in the early 1980s [Syc98]
aiming to create organizations of systems capable of giving distributed solutions for
complex problems requiring intelligence.

In early years, open systems have been extended beyond DAI, by regarding prob-
lem solving as the activity of several experts and viewing a reasoning process as
a sequence of choices [Hew86, Hew91]. These ideas are regarded as bases for the
creation of multi-agent platforms. In contrast to the work on DAI, which considers
that intelligence proceeds from the manipulation of symbols, artificial life empha-
sizes on viability, behavior and autonomy. AL approaches focus on understanding
cooperation and coordination mechanisms on the basis of criteria not involving the
intervention of symbols. These areas are equally important and have influenced the
development of multi-agent systems (MASs) on aspects of communications, automa-
tion and robotics on the regulation of actions in a real world.

Multi-agent systems have several areas of applications. Generally speaking, MASs
are able to:

1. solve problems that are too complicated for a centralized agent to deal with
due to resource limitations;

2. allow for inter-operation and interconnection between multiple existing sys-
tems;

3. solve problems that naturally concern a society of autonomous interacting
agents;
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4. provide solutions using spatially distributed information sources; and

5. enhance performance, e.g., computational efficiency, reliability, extensibility,
maintainability, responsiveness, and flexibility.

Four main characteristics of MASs are:

1. no system global control;

2. decentralized data;

3. asynchronous computation; and

4. each agent has a limited viewpoint, e.g., incomplete information or limited
capabilities for solving problems.

Research in MASs is related to the study, behavior and construction of an assembly
of possibly pre-existing autonomous agents that interact with each other. An MAS
is a loosely combined network of problem solvers, i.e., agents who are autonomous
and heterogeneous in nature, that interact to solve problems that are beyond the
individual capabilities or knowledge of each agent [Syc98]. According to Wooldridge
and Jennings [WJ95], an agent usually has the following properties:

1. Autonomy. Agents have direct control over their actions and internal states
so that they can operate without the direct intervention of humans or others.

2. Social ability. Agents can interact with other agents (and possibly humans)
using certain agent-communication language.

3. Reactivity. Agents perceive their environment, e.g., a physical world consists
of a collection of other agents or a simulated world with other agents, and
respond in a timely fashion to changes that occur in it.

4. Pro-activeness. Agents are able to react to their environment and exhibit
goal-directed behavior by taking the initiative.
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4.2 ART Testbed

ART stands for "Agent Reputation and Trust" that indicates the problem domain of
the testbed. It is designed not only for testing a single reputation system in different
communities, but for providing a framework to allow different agents using different
trust and reputation mechanisms to compete with each other. It is necessary for
us to take an insight into how the ART testbed works because the design purposes
of our simulation are quite similar to that of the ART testbed. However, the ART
testbed cannot be directly used in our work, since it was developed so extensively
to meet the demands from competitions between trust and reputation mechanisms.
Instead, we focus on the research objectives of the testbed that can be considered as
requirements for our simulator design. In addition, our simulation engine described
in Section 5.3 is implemented based on the ideas from the testbed’s architecture.

Section 4.2.1 covers the basics of the ART testbed. Section 4.2.2 represents the
research objectives and design requirements proposed by the ART team who devel-
oped the ART testbed. Section 4.2.3 describes the architecture of the ART testbed
especially the work processes of its simulation engine.

4.2.1 Basics

Trust and reputation in multi-agent systems is a hot topic of research in both indus-
try and academia, and a wide variety of trust and reputation modeling technologies
and many metrics for empirical validation have been developed. However, it is diffi-
cult to find a suite of problem instances to represent the topic as a whole. Unified per-
formance metrics and objectives for trust technologies must be provided to the public
to evaluate systems based on transparent and recognizable standards [FKM+05a].
Barber et al. [BFK03] argue that objective standards are essential to justify success-
ful trust and reputation systems and to give a starting point of research strategies
for future work. As a solution, a working group named ART was created to develop
a testbed for experimentation and comparison of different mechanisms to foster a
wide range of trust and reputation research problems using unified experimentation
methods [FKM+06].

The Agent Reputation and Trust (ART) testbed14 was presented for the first time
during AAMAS’0515, and since AAMAS’06, the competition of trust and reputation

14http://www.art-testbed.net/ [Retrieved 2009-09-09]
15AAMAS is the International Conference on Autonomous Agents and Multi-agent Systems.
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mechanisms using the ART testbed has been held annually.

4.2.2 Requirements

According to Fullam et al. [FKM+05a, FKM+06], the ART testbed provides solu-
tions to fulfill trust and reputation research objectives, such as:

1. Agents have to interact with others to gain resources like physical goods, in-
formation or services.

2. Agents should have the capability to decide whether interactions are risky,
e.g., the agreements between agents may or may not be fulfilled.

3. Agents should be able to minimize risks, for instance, to interact with reliable
agents by predicting if they are most likely to fulfill agreements.

4. Agents should be able to make these predictions via trust and reputation
models.

Concerning the decision making abilities as part of the requirements for simulation
setup, an agent should be able to:

1. Identify and isolate untrustworthy agents. An agent must be able to
identify malicious agents and refuse interactions with them in order to protect
itself from exploitation.

2. Evaluate the utility of an interaction. An agent must be able to evaluate
the utility of an interaction before deciding to participating in the interaction.
This is necessary because the agent can get better negotiate payment after
knowing the possible utility.

3. Determine whether to interact with other agents. An agent must be
able to decide whether to interact with other transaction partners or not. In
order to make the decision, the agent needs to predict whether the partner will
fulfill the agreement. The prediction can be made by comparing the number
of successful transactions (decisions) made by the agent with the total number
of transactions initiated by the agent.
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For the purpose of our simulation design, two requirements are added with specific
focus on agents’ capability to effectively interpret their behavior model (Section 6.1)
into decision making of giving feedback (rating) to their interaction partners. In
other words, each agent must be able to:

1. Decide whether to give feedback to its partner After an interaction
is finished, an agent must be able to choose whether to give feedback to its
interaction partner. This decision is made depending on the agent’s own be-
havior model. For example, an honest agent will always give feedback to its
interaction partner, whereas a selfish agent will never do that.

2. Decide what kind of feedback to give to its partner Given willingness
to share opinion on an completed transaction with other agents, an agent must
be able to decide what kind of feedback to give to its interaction partner. The
feedback can be either correctly reflecting or completely different from the
utility that an agent gains from an interaction.

On the other hand, our simulation aims to evaluate a set of reputation systems in
a virtual environment, i.e., a widget sharing community. From the methodological
perspective, evaluation criteria are needed for examining results of simulations and
determining the strengths and weaknesses of different reputation systems. The re-
search requirements for reputation systems presented in [FKM+05a] are taken into
consideration for the evaluation criteria selection (Section 6.1.3). In terms of mod-
eling reputation systems, a system should be:

1. Accurate. A reputation system should be able to make accurate predictions
about another agent’s future behavior. An indicator for accuracy can be the
similarity between the agent’s predicted behavior and its true behavior.

2. Adaptive. An agent’s behavior should be dynamic. It may suddenly lose
competence or behave maliciously. A reputation system should be adaptive to
reflect these behavior changes.

3. Quickly Converging. A reputation system should quickly adapt to the
changes of agents’ behavior.

4. Multidimensional. A reputation system should reflect an agent’s trustwor-
thiness characteristics across multiple categories, e.g., an agent can act as both
a buyer and a seller in online marketplaces.
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5. Efficient. Algorithms used in reputation systems should be efficient in terms
of computational time.

Not all of the requirements for reputation systems are relevant to our simulations.
In particular, multidimensionality is not one of our research goals, because in our
case, each agent acts as either a user or a developer. We return to this topic and
describe the evaluation criteria in our simulation in Section 6.1.3.

4.2.3 Architecture

The testbed can be used for both competition and experimentation. For the pur-
pose of competition, the ART testbed is designed as less domain-specific to avoid
restricted solutions. In addition, the testbed provides a suite of tools with flexible pa-
rameters, allowing researchers to execute customizable and repeatable experiments
with it. Therefore, ART can be used to compare different reputation systems using
objective metrics [FKM+05a].

To better understand how the ART testbed works, we take an insight into its imple-
mentation architecture. Fullam et al. [FKM+05b, FKM+05c] list five components
that are included in the testbed architecture:

1. Game Server, which is designed for setting up and running games;

2. Simulation Engine, which is responsible for controlling the simulation environ-
ment by enforcing chosen parameters;

3. Agent Skeleton, which assists game players to develop their code;

4. Database, in which Simulation Engine calculations and experiments analysis
results are stored; and

5. User Interfaces (Game Setup Interface and Game Monitor Interface), which
help players to set up and view their games.

The interactions between the system components are illustrated in Figure 5. This
figure shows that the Simulation Engine serves as the heart of the testbed. It is
responsible for initiating a simulation game, controlling the simulation environment
using various parameters, allocating interaction pairs and coordinating communi-
cation among interaction pairs. In each period, the Simulation Engine manages
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Figure 5: The ART testbed architecture. Modified from [FKM+05c].

agents’ actions and decision making, transactions, calculation of final reputation
values, and distribution of reputation values. Through the Simulation Engine, the
Database collects and stores simulation environment and agent data about ratings
and calculations of overall reputation values. The User Interfaces graphically display
details about the simulation progress to make them viewable. The Agent Skeleton
is in charge of coordination tasks with the Simulation Engine, such as formalizing
opinions and calculating reputation values. In addition, the Agent Skeleton allows
customization of algorithms and implementation of new algorithms to handle com-
munication and interactions among agents.

To illustrate how agents’ actions are coordinated in the Simulation Engine, a custom
scenario is formed in the art appraisal domain. In the art appraisal community,
agents can act as either painting appraisers with different levels of expertise in
different artistic areas, e.g., classical, postmodern, or as clients who ask for appraisals
for paintings from various aspects. An appraiser can give the appraisal based on
her own expertise, or purchase opinions from other appraisers, if the appraiser is
not sufficiently knowledgeable. Details about the art appraisal domain rules can be
found in [FKM+05a].

Given the scenario, the Simulation Engine coordinates agents’ actions based on the
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following workflow:

1. In the beginning, the Simulation Engine assigns clients to each appraiser. To
simulate real world clients’ preference for correct appraisers, the more accurate
appraisals an appraiser gave in the past, the larger shares of clients will be allo-
cated to the appraiser by the Simulation Engine. To simulate clients’ requests
for appraisals, the Simulation Engine sends notifications of appraisal requests
to the allocated appraisers. It also pays fees into correspondent appraiser’s
bank account to simulate the pre-payment of appraisals from clients.

2. The Simulation Engine then enables reputation transactions among apprais-
ers. Appraisers may check reputation information about third-party apprais-
ers’ expertise in given areas to decide from which appraisers to buy appraisal
opinions. When an appraiser requests reputation information, the potential
provider may reject the request, which directly aborts the transaction, or ac-
cepts the request and sends the reputation to the requesting appraiser after
receiving payment. However, the reputation information from the provider
need not be correct. The transaction is aborted if the provider chooses to re-
ject the request. The Simulation Engine is responsible for handling the passing
of transaction messages. Moreover, the Simulation Engine handles payments
between appraisers by transferring money from the requesting appraiser’s bank
accounts into the provider’s bank accounts.

3. The Simulation Engine also supports opinion transactions between appraisers.
If an appraiser sends request to a potential opinion provider, the provider
can reject the request, thus abort the transaction. Alternatively, the provider
may choose to accept the request. Upon receipt of the potential opinion,
the requester can either decline it to abort the transaction or pay the fees.
After receiving the payment, the provider sends the opinion, which may be
untruthful. Similar to the previous step, the Simulation Engine controls the
passing of transaction messages and the payment transfer.

4. Finally, the Simulation Engine calculates the appraiser’s final appraisal using
a weighted average of the opinions the appraiser has bought. Opinion weights
are real values between zero and one that an appraiser assigns to another
agent’s opinion.
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Table 3: Payoff matrix in "win-lose" terminology for the Prisoners’ Dilemma game,
where C = cooperate and D = defect.

C D

C win - win lose much - win much

D win much - lose much lose - lose

4.3 Simulation Scenarios

As reputation systems have been studied in different domains, in order to capture
all the relevant aspects, many of the attempts have been made to devise a generic
enough scenario but few of them have been successful [FKM+05a]. As a result, the
Prisoners’ Dilemma (Section 4.3.1) and customized scenarios (Section 4.3.2) have
become two popular ways that are used for simulation of reputation systems to
solve this problem.

4.3.1 Prisoners’ Dilemma

The Prisoners’ Dilemma is a game in which two players as a pair can each choose
to cooperate or defect in order to gain better utilities. Fudenberg and Tirole [FT91]
describe the Prisoner’s Dilemma game as follows:

Two suspects are arrested for a crime. The police have to convince
the suspects to give testimony against each other, because there lacks
sufficient evidence to convict either suspect. The suspects are separated
in different cells to prevent them from communicating with each other.
The police tell each suspect that if he testifies against (does not cooperate
with) the other, he will be released and will receive a reward, only if the
other does not testify against him. If neither of the suspects testifies,
both of them will be released due to insufficient evidence. If one testifies,
the other will go to prison. If both of the suspects testify, they will get
the rewards for testifying.

In the Prisoners’ Dilemma game, two players act as a pair, who have two possible
actions: to cooperate or to defect, i.e., to testify. Table 3 shows the payoff matrix
for the Prisoners’ Dilemma game.
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The equilibrium analysis of the Prisoners’ Dilemma can be performed using elim-
ination of dominated strategies [FT91]. The analysis results show that the unique
Nash equilibrium of the Prisoners’ Dilemma, i.e., the strategy (defect, defect), can
bring short-term maximized utilities to both players, whereas the long-term optimal
strategy prefers (cooperate, cooperate).

The Prisoners’ Dilemma can be seen as a generic scenario that allows simulation
studies in which conditions cooperation exists. [MMH02] is one of the examples
that apply the Prisoners’ Dilemma as a simulation scenario to experimental evalu-
ation of reputation systems. However, multi-agent simulation using the Prisoners’
Dilemma scenario have several problems, e.g., agents have no opportunity to iso-
late untrustworthy opponents, because they have to interact with all agents in the
community [FKM+05a].

4.3.2 Custom Scenarios

Custom scenario is another alternative that can be used in simulation-based evalu-
ation of reputation systems. Examples of custom scenarios for evaluation purposes
of reputation systems in different domains are:

1. A scenario of a supply chain with many markets that allows complex settings
for agents to make their own decisions on various transactions of buying and
selling [SS02].

2. A scenario of a community where agents provide homogeneous symmetric ser-
vices to each other [SVB06].

3. A scenario of art appraisal community for simulation on ART testbed; see
Section 4.2.3.

Other examples of custom scenarios can be found in domains, such as P2P applica-
tion, e-commerce and multi-agent systems [GJA03, XL03, Nur07]. However, there
still lacks a suitable scenario designed for simulation of widget sharing reputation
systems. As the issue has close connections to our simulation setup, we return to
this topic and describe our simulation scenario in Section 5.
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5 Simulation Setup

The reputation systems discussed in Section 3 have been simulated and evaluated
in different contexts. However, none of the previous studies has created a scenario
in which agents (i.e., users and developers) interact with each other indirectly via
a transaction object. In this simulation, we consider an online widget sharing com-
munity where developers provide widgets and users act as consumers of virtual
products. This section describes a custom scenario in Section 5.1, followed by a
regular user model and a developer model in Section 5.2. The implementation of
the main workflow of our simulation is presented in Section 5.3, and Section 5.4
covers the simulation parameters that are used in the simulation setup.

5.1 A Custom Scenario

The custom scenario is built around the idea of emulating a real world widget shar-
ing system. In widget sharing systems, a set of agents interacts with each other
indirectly, i.e., via a piece of software. In this system, some agents act as users
that download widgets, which were developed by other agents who are known as
developers. The design of a custom scenario is based on this structure and oriented
to the study of reputation systems.

Consider the following scenario:

A developer Joe publishes a Sudoku widget in a widget sharing com-
munity, called WidSets.com. Later user Jane browses the WidSets.com
webpages and finds the Sudoku widget. She checks this widget’s rating
and information concerning the developer, Joe. After evaluating the in-
formation, Jane decides to download the widget. After using Sudoku for
a while, she decides to share her own opinion with other users by rating
it. A reputation system working behind the community aggregates the
rating from Jane into Sudoku’s overall rating and makes it visible to
other users of WidSets.com. The reputation system also distributes this
rating to Sudoku’s developer, Joe, and aggregates it into Joe’s overall
rating.

In this scenario, there are two kinds of agents: regular users and developers. It is
important to note that, in reality, not all users and developers are necessarily honest,
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and this needs to be taken into consideration in the simulation. Developers can
provide malicious widgets, whereas some users may give dishonest ratings to widgets.
To clarify it, several decision making phases are modeled within an interaction for
both users and developers.

5.2 Decision Making

The decision making phases are described for the regular users (Section 5.2.1) and
developers (Section 5.2.2) respectively.

5.2.1 Regular User

Figure 6 shows an overview of the interaction process from the point of view of
a regular user. This process contains a sequence of three decision making phases.
These phases are:

1. Should I download the widget? As it suggests, this question is asked after a
certain widget has been selected by a user; see Section 5.3. The user has to
decide whether to continue a download transaction or not. This decision is
based on a behavior model which takes into account the rating of the widget
and its developer. She may accept and download the widget or abort the
transaction.

2. Should I rate the widget? If the user decides to download the widget, the
nature of the widget (good or malicious) is revealed to the user who can share
her opinion of the widget with other users in the community. The user can
also choose to skip the rating step.

3. What kind of rating should I give to the widget? This is a further question
when the user chooses to rate the widget she used. The rating decision depends
on the outcome (i.e., the nature of the widget), and the user’s behavior models;
see Section 6.1.1.

5.2.2 Developer

Figure 7 shows the interaction process from the developer’s point of view. Similarly,
developers also have to make decisions at some point of the whole interaction pro-
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Figure 6: An overview of the interaction process from a user’s point of view. Within
each interaction with a selected widget, the user has to make decisions in three
phases: (i) whether to download the widget or not; (ii) whether to rate the widget
or not; and (iii) to give what kind of rating to the widget.

cess. However, since they cannot control the rating process itself, the main tasks of
developers are to decide:

1. Should I upload a widget to the online community? Here developers have
to decide whether to create a new widget depending on their willingness to
contribute more widgets to the community. For each developer, the number
of widgets he has may influence this choice.

2. What kind of widget should I create? Developers make this decision according
to their behavior models; see Section 6.1.1.

5.3 Implementation

To handle the simulation environment with a custom scenario proposed in Sec-
tion 5.1, we implemented a simulation engine that is adapted from ART testbed’s
architecture described in Section 4.2.3. The simulation engine is responsible for
initiating a certain number of developers, users and widgets, and coordinates in-
teractions among them. Figure 8 shows the simulation engine’s workflow from the
point of view of implementation.
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Figure 7: An overview of the interaction process from a developer’s point of view.
In the uploadWidget step, the developer has to make decisions in two phases: (i)
whether to upload the widget or not; and (ii) to upload what kind of widget.

Initiation The simulation engine begins its work by initiating a certain number of
developers, users and widgets. To simulate developers and users in the online widget
sharing community, the engine generates a user pool and a developer pool. Each
agent (i.e., user or developer) is assigned a behavior model, which influences the
agent’s decisions throughout the simulation. To simulate widgets owned by devel-
opers, the engine produces widgets for each developer. These widgets are assigned
a different nature (i.e., good, neutral or malicious) and stored in a widget pool.

To make the simulation realistic, the simulation engine decides the number of users
(or developers) for each behavior type, the number of widgets each developer owns,
and the nature of widgets using probabilistic distributions learned from the empirical
data; see Section 5.4.

Iterations After initiation, our simulation proceeds as a series of iterations. The
engine manages adding new widgets into the widget pool, selecting widgets for
users, collecting ratings from users, and calculating overall ratings for widgets and
developers. Within one iteration, these tasks are divided into four phases and the
simulation engine controls these phases in sequence:
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Figure 8: A flowchart shows how our simulation engine works during one simulation
iteration. The workflow includes four phases: adding new widgets (Phase 1), trans-
acting and rating process (Phase 2), calculating final reputations of widgets and
developers (Phase 3) and requesting for new widgets (Phase 4). The red diamonds
concern users’ decision making process.
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Phase 1: At the beginning of each iteration, the simulation engine checks if
there is a request16 for new widgets. If there is a request, the engine selects
developers from the developer pool to create new widgets. The developer se-
lection policy obey three rules: (i) one developer can only produce one new
widget in one iteration, (ii) the candidate has not generate any widgets during
the previous iteration, and (iii) the number of widgets the candidate owns
must always obey the probabilistic distribution defined specifically for this
simulation parameter; see Section 5.4.3. After developer candidates are se-
lected, they are responsible to create widgets and these widgets are added into
the widget pool. If no new widgets are required, the engine will enter the next
phase.

Phase 2: In this phase, a loop starts with selecting a user candidate from the
user pool. The simulation engine chooses a widget for the user based on the
widget selection policy, i.e., the widgets with higher popularity are more likely
to be chosen. The user, then, have to make several decisions that are shown
as red diamonds in Figure 8. As users’ decision making process has been
discussed in Section 5.2.1, only the "yes" paths are gone through here. As
the user decides to download the widget, the simulation engine performs the
download transaction and sends a signal to trigger the rating process. Based
on the decisions made by the user, the engine gives a reputation score to the
widget and distribute the rating to the widget’s developer. The loop ends only
when there is no user left unselected in the user pool.

Phase 3: For the purpose of experiment analysis, all the ratings are collected
and calculated for widgets and developers respectively.

Phase 4: To make our simulation close to the real world situation, the sim-
ulation engine is responsible to request for new widgets by the end of one
iteration. The engine generates the number of new widgets following a pat-
tern of events that occurs with an average rate and time independently, i.e.,
the Poisson distribution. The setting of variables is described in Section 6.1.

16This request is generated in the fourth phase during the previous iteration, so the first phase
is usually skipped during the first iteration.
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5.4 Simulation Parameters

The simulation implementation described in the previous section depends on various
parameters. Table 4 gives an overview of the parameters that are specifically con-
cerned with the simulation setup. To ensure that the results of our simulation are
realistic, we initialize these parameters using statistical models that are determined
by analyzing empirical data collected from an online widget sharing website.

Section 5.4.1 explains the methodology that is used to find the best models. Sec-
tion 5.4.2 explains how the data was collected from a real widget sharing website,
and Section 5.4.3 illustrates the best model selection process for each parameter
based on the collected data.

Table 4: Simulation Parameters

Parameter Description

Number of users (Number of
developers)

This parameter fixes the size of users (devel-
opers) for each behavior type separately at
the beginning of every simulation run.

Widgets per developer This parameter determines the number of
widgets each developer has in the initializa-
tion phase.

Widget popularity This parameter sets download frequency for
each widget.

5.4.1 Methodology

Model selection is a mechanism that allows selecting the best model from a set of
predefined candidates by estimating the probability of the models from empirical
data. For model selection, the previous work usually focuses on statistical models
of which the most popular target distribution model is the power-law [EPW+07],
because many man-made and natural phenomena, such as city population, traffic in
websites and earthquake magnitudes, are distributed according to a power-law dis-
tribution [GMY04, New05]. Power-law distributions are normally detected using log
transformation (LT) [BWW85], but [VP06] and [EPW+07] argue that log transfor-
mation is not reliable for choosing between distribution models, i.e., the power-law
and the exponential. In addition, [EPW+07] suggests that Akaike weights can be
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used as measures for selecting the best statistical model that fits a given data set.

To determine the appropriate statistical models for the simulation parameters, we
adopt model selection methods, more specifically Akaike weights. However, to avoid
overfitting the data with unnecessarily complex models, we extend the test subjects
by simultaneously considering other distributions of different complexity as candi-
dates for our model selection. The following explains what are Akaike weights and
gives an overview of the candidate statistical models tested using Akaike weights.

Akaike Weights Akaike weights is a model selection method that allows ranking
and weighting different models by providing each model a relative weight of evi-
dence [BA02, EPW+07]. The Akaike weights can be interpreted as the probability
that a given model is the best model, given the data and the set of statistical models.
To determine the best distributions to initialize simulation parameters, the Akaike
weights method is adopted to select the optimum statistical model from several
candidates.

Akaike weights are calculated using the difference in Akaike’s information criterion
(AIC) for each candidate compared with the minimum AIC [BA02]. The weights
are relative likelihoods of each model, calculated by

wi =
exp(−∆i/2)∑n
i=1 exp(−∆i/2)

, (17)

where ∆i is AIC difference given by ∆i = AICi − AICmin.

The Akaike’s information criterion for each model in a set of candidates is given by

AICi = −2 log[Li(θ̂i|D)] + 2Ki. (18)

Here log[Li(θ̂i|D)] is the log-likelihood of a particular parameter value in model i
given the data set D and parameters θ̂i. The variable Ki considers the number of
estimated parameters included in model i. The log-likelihood of the model given
the data reflects the overall fit of the model (smaller values indicate worse fit). The
best model is the one with the highest value of Akaike weight.

Candidate Models As discussed above, appropriate pre-defined candidate mod-
els act as the basis of model selection. Since many physical and social patterns
follow a power-law distribution (Section 5.4.1), a power-law distribution model is
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considered as one of the candidate models. The probability density function for a
power-law distribution is [New05]:

p(x) = Cx−α. (19)

Here C is a normalization constant:

C = (α− 1)xα−1
min , (20)

and the exponent α is calculated using

α = 1 + n

[ n∑
i=1

ln
xi
xmin

]−1

. (21)

The variables xi, i = 1...n correspond to the measured values of the given data set
x, which can be the number of widgets per developer or widget download frequencies.
Finally, the variable xmin is the minimum value of x. The exponent α in Equation 19
should be a positive number (α > 0), whereas in Equation 20, the constant C is
valid only when α > 1; see [New05].

Many quantities with highly right-skewed distributions do not necessarily follow a
power-law distribution [New05]. For this reason, two related distributions, the expo-
nential and the log-normal distribution, are included in the analysis; see, e.g., [Mit04].
To ensure that the data is not overfitted with unnecessarily complex distributions,
we also included a set of common distributions in the analysis; see Table 5.

5.4.2 Description of Data

To form our simulation with real world data, the Widget Library of WidSets.com
was crawled. The crawling resulted in webpages for 7203 widgets and 2942 devel-
opers using a recursive crawling tool. The crawling process was initiated from a list
of widgets that are ranked according to their popularity (i.e., download frequency),
and from there on, the crawler recursively downloads the description pages of ev-
ery widget on the list. For each widget crawled, the key information that were
needed for further analysis (Section 5.4.3) was extracted, e.g., the rating and the
popularity of a widget. Specifically for developers, the URLs are kept in a list and
explored recursively to get essential data, such as a list of widgets each developer
has uploaded.
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Table 5: Summary of Akaike weights calculated for each simulation parameter. The
candidate models are listed as row headers, whereas the simulation parameters in
column headers.

# Model Simulation Parameter

Widgets per developer Widget popularity

1 Exponential 0 0

2 Log-normal 7.3 · 10−30 ≈ 1

3 Negative binomial 0 0

4 Normal 0 0

5 Pareto ≈ 1 2.2 · 10−288

6 Poisson 0 0

7 Two component Gaussian

mixture

0 0

For most of the widgets, I only managed to crawl a small fraction of the actual users
from the widgets’ webpages, because (i) for each widget, only five of the most recent
users are shown on the webpage; (ii) some users prefer to protect their personal
information from being exposed to the public; and (iii) no user list is available from
the WidSets.com website.

5.4.3 Analysis

The analysis of the empirical data described in Section 5.4.2 aims to determine the
best models for each simulation parameter. Before analyzing the given data set,
we removed widgets for which the number of downloads is not feasible or realistic
for simulation purposes. The removed widgets are mainly pre-selected ones that
users obtain when they register for the website. The following sections describe the
analysis for the simulation parameters listed in Table 4.

Users and Developers Since not all the users’ information is available from
WidSets.com (Section 5.4.2), it is assumed that the number of users equals the
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download frequency of the most popular widget, i.e., Wikipedia. Thus, millions of
users (≈ 5 million users) are consided as having used WidSets.com service. However,
this number of users is unnecessarily large and somewhat infeasible for simulation
purposes. On one hand, a large fraction of users does not download any widgets
beyond the pre-selected widgets in the registration phase. On the other hand, storing
information about millions of users requires significant amount of memory and this
workload can largely slow down the simulation performance. To ensure that the
number of users is both realistic and feasible, the users who passively accept the
pre-selected widgets and do not make their decisions independently are removed.

In our simulation, a developer is defined as a person who has contributed at least
one widget to the system. Since no evidence shows developers are influenced by
other factors when they decide to make contributes to the online widget sharing
community, we regard all of the developers to be independent decision makers and
directly use the number of developers from the data; see Section 5.4.2. Moreover, we
remove the pre-selected widgets from the system and achieve an appropriate ratio
of users to developers.

Given the corrected ratio of users and developers, the probability distribution for
each type of agents (i.e., users and developers) should be decided in the simulation.
In our case, the probability specifies the likelihood that each of user and developer
acts as a pair in a transaction. A Normal distribution [Rob95] is used to model
the numbers of users and developers of each behavior model, with the mean as an
average number of a certain type of users or developers, and a standard deviation
to achieve some variation.

Widget Upload Frequencies for each developer To determine a suitable up-
load policy for the simulation, the upload frequencies for each developer should be
analyzed. We started by plotting the number of widgets each developer owns in
the widget sharing community; see Figure 9. The figure shows the number of wid-
gets a developer has uploaded on the x-axis, and the number of developers with
the same number of widgets on the y-axis. The shape of the plot shows that the
number of uploads follows a heavy-tailed distribution. For this reason, a power-law
or exponential distribution could be expected to fit the given data set. The analysis
supports our hypothesis as the Pareto distribution, i.e., power-law distribution, has
the highest Akaike weight, which is close to 1 (w ≈ 1).

To verify the result, a log-log histogram [EPW+07, New05] is used to reveal the
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power-law form of the distribution. The straight line in Figure 10 suggests that the
data set, i.e., the number of widgets per developer has, follows a power-law distri-
bution. With these evidences, we select the Pareto distribution for this parameter.

Widgets Download Frequencies To determine an appropriate download policy
for the simulation, we plotted the download frequencies of widgets; see Figure 11.
The download frequency for each widget is shown on the x-axis, whereas the number
of widgets which have been downloaded for certain times is shown on the y-axis.
Since most of the points are located between 0 and 3500, the plot is truncated along
the x-axis from 3500 onwards to make the shape of the distribution more clear.
The shape of the plot suggests that the number of downloads follows a heavy-tailed
distribution. The analysis indicates that the log-normal distribution, having an
Akaike weight close to 1, is the best model for the data. The log-log histogram in
Figure 12 also helps us to rule out the possibility that the data set follows a power-
law distribution. For this reason, we choose the log-normal distribution to set the
parameter of the download frequencies of widgets.
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Figure 9: A histogram shows the number of developers (y-axis) as a function of the
number of widgets each developer has uploaded(x-axis). A point (x, y) indicates
how many developers (y-axis) have uploaded x widgets (x-axis).
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Figure 10: A log-log histogram of the number of developers (y-axis) as a function
of the number of widgets per developer has (x-axis).

Figure 11: Histogram showing the number of widgets (y-axis) as a function of down-
loads (x-axis). A point (x, y) indicates how many widgets (y-axis) have been down-
loaded x-times.
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Figure 12: A log-log histogram of the number of widgets (y-axis) as a function of
downloads (x-axis).
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6 Comparison of Reputation Systems

The experiments focus on comparing the effectiveness of different reputation sys-
tems in the simulation environment proposed in the previous section. The experi-
ment subjects cover all categories of reputation systems, as summarized in Table 2;
see Section 3.4. In particular, we consider two simple systems, such as eBay from
the Accumulative systems and OnlyLast from the Blurred systems, and four com-
plex systems: Average, BlurredSquared, Beta and Perseus. Section 6.1 describes
the experiment setup. Section 6.2 details the experiments and illustrates the results
collected from these experiments. Section 6.3 summarizes the strengths and weak-
nesses of the studied reputation systems and provides recommendations based on
the experiment results.

6.1 Experiment Setup

In order to empirically evaluate the performance of reputation systems and their
vulnerabilities to attacks in widget sharing communities, we simulated different
agent behavior models (Section 6.1.1), built up a model for acceptance behavior
(Section 6.1.2) and defined the evaluation criteria (Section 6.1.3).

6.1.1 Behavior Models

In the experiments, we consider three types of developers: Honest, Malicious, and
Disturbing.

1. Honest. Honest developers always create high quality widgets.

2. Malicious. Malicious developers upload good, neutral, or bad widgets by
chance.

3. Disturbing. Disturbing developers attempt to build up a good reputation
by acting honestly (i.e., uploading good widgets) and when having obtained a
high reputation, they will start to create bad widgets until their reputation is
badly damaged.

These behavior models, adapted from [SVB06], mainly concern developers’ decision
making in creating and uploading widgets; see Section 5.2.2. On the other hand, we
considered four types of users.
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1. Honest. Honest users only download good or neutral widgets that are up-
loaded by trustworthy developers. This type of users always rate the widget
fairly according to the its outcome.

2. Selfish. Selfish users act similarly as the honest users, except that they never
rate widgets.

3. Spamming. Spamming users occasionally download good, neutral or bad
widgets, and always give negative rating to the widgets they used in order to
undermine reputation systems.

4. Misleading. Misleading users accept all kinds of widgets, and always rate
the downloaded widgets in an opposite way, i.e., give negative ratings to good
widgets and positive ratings to bad widgets. By giving opposite ratings, they
tend to mislead other users and undermine reputation systems.

These user models focus on users’ decision making on downloading and rating wid-
gets; see Section 5.2.1. With the exception of Misleading, these behavior models are
adapted from [SVB06] and [Nur07].

6.1.2 Acceptance Model

It is assumed that the more popular a widget is, the higher probability that users
choose the widget as a potential download candidate. We simplify users’ widget
selection policy and regard widgets’ popularity as the unique standard for users
to select widgets. Here, widget popularities are initialized using the log-normal
distribution, which is determined from the empirical data; see Section 5.4.3.

It is assumed that once a widget has been selected, the trustworthiness of this
widget and its developer influences users’ download decisions. In our simulation,
the trustworthiness of widgets and developers is determined by their ratings gained
from the previous transactions. Based on the pre-defined rating thresholds (see
Table 6), widgets and developers are categorized into three profiles: trustworthy,
neutral and untrustworthy; see Table 7.

6.1.3 Evaluation Criteria

As the main evaluation criteria, we consider the number of transactions and the
false detection rate of widgets.
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Table 6: Rating threshold constants.

System Threshold (T )

Tperfect Tgood Tbad Tworst

eBay ∞ 10 −10 −∞

Average 1 0.5 −0.5 −1

OnlyLast 1 0.9 −0.9 −1

BlurredSquared π2

6
0.6 0.2 −π2

6

Beta 1 0.5 0.4 0

Perseus 1 0.7 0.3 0

Table 7: Profiles of widgets and developers defined based on the rating thresholds
(T ) in Table 6.

Profile Range of T

Trustworthy [Tgood, Tperfect)

Neutral (Tbad, Tgood)

Untrustworthy (Tworst, Tbad]
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Figure 13: An example of evaluation criteria.

1. Number of transactions. The number of transactions of widgets measures
the number of widgets of a certain type (i.e., honest or malicious) that have
been downloaded.

2. False Detection Rate. A widget is falsely detected when its reputation is
the exact opposite to its nature, e.g., an honest widget is falsely detected if it
holds a reputation value which falls in the scale segment of the untrustworthy
profile; see Section 6.1.2. Thus, the false detection rate measures the portion
of each type of widgets that are incorrectly detected.

The downloads and the false detection rate are examined separately for widgets of
each type (i.e., honest or malicious), while the number of transactions and the false
detection rate are measured for developers and users in each behavior model; see
Section 6.1.1. Schlosser et al. [SVB06] consider measurements that are based on
the reputation values of the agents. In our case, our emphasis is on the downloads
of honest widgets, because they ensure that the system remains operational. It
is assumed that within widget sharing communities, if a reputation system works
effectively, users will be able to distinguish honest widgets from malicious ones. As a
result, honest widgets will become more and more popular and gain more downloads.

Figure 13 demonstrates an example of the evaluation criteria for widgets and devel-
opers. The horizontal axis depicts the number of iterations in all cases, whereas the
vertical axis shows the value of the measured criterion.
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6.2 Experiment Results

To examine the effectiveness of the reputation systems, two experiments were applied
in the simulated widget sharing community described in Section 5. This section
provides details to illustrate to which degree the different reputation systems can
stand possible attacks from dishonest developers or users.

6.2.1 Experiment I: Varying Proportion of Dishonest Developers

The goal of this experiment was to investigate the maximum amount of dishonest
developers at which the reputation systems are able to guarantee a majority of the
users can download honest widgets. The number of users was determined using the
normal distribution, with µ = 100 and σ2 = 5, to ensure the total number of users at
the same level (≈ 100 users). In this experiment, it was assumed that all the users
are honest. On the other hand, the number of developers was determined using
the normal distribution (σ2 = 5), and the proportions of honest and a certain type
of dishonest developers, i.e., malicious or disturbing developers, were varied. The
number of widgets each developer owns was simulated using the Pareto distribution
to ensure that each developer has 4 widgets on average. Each developer and widget
started with a reputation value of 0. For each reputation system, we ran 1000
iterations and repeated the same setup for 30 times.

In this experiment, the performance of each reputation system when coping with dis-
honest developers of different behavior model in each run were separately examined.
The goal was to find the critical point where a reputation system fails to guarantee:
(i) the downloads of honest widgets are more than that of malicious widgets; or (ii)
the downloads of honest widgets falls below 40. For instance, given 100 users who
are willing to download widgets, if the downloads of honest widgets is 30, with 10
more downloads comparing to that of malicious widgets, the reputation system still
fails.

The results are summarized in Table 8. The values reported in the table are the
maximum proportion of dishonest users at which the reputation system is able to
remain resistant against this kind of dishonest users.

The results indicated that most systems were equally resistant to the attacks from
disturbing and malicious developers. Within these examined systems, there was
no significant difference in treating these two kinds of developers, because from
the point of view of users, both the disturbing developers and the malicious ones
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Table 8: Performance of different reputation systems. The values in the columns
indicate the percentage of developers of the corresponding behavior type.

System Malicious Disturbing

eBay 60a > 80

Average 70 > 80

OnlyLast 60 > 80

BlurredSquared 40 60

Beta 50 50

Perseus 50 > 80

aThe system is resistant up to x% of this type dishonest de-
velopers. The rest are honest developers.

have a probability to provide malicious widgets and are the same kind of dishonest
developers who may create malicious widgets. Since users do not interact with
developers directly, they are not sensitive to the difference in behaviors between
these two types of developers. In addition, the resistant level of these systems
to disturbing developers was higher than that to malicious developers. Since the
results of malicious developers corroborates the simulation results from Schlosser
et al. [SVB06], the lower probability of disturbing developers to create malicious
widgets can be one possible reason for this deviation.

6.2.2 Experiment II: Varying Proportion of Dishonest Users

This experiment separately examined the performance of each selected reputation
system when coping with dishonest users of different behavior model. In each simu-
lation run, the total number of users was kept at the same level (≈ 100 users), and
the proportions of different types of users, i.e., spamming, selfish or misleading users,
were varied. On the other hand, the number of developers was determined using the
normal distribution (σ2 = 5) and kept the distribution of developer behavior models
fixed, i.e., µHonest = 40, µMalicious = 5 and µDisturbing = 5. Thus, the total number
of developers was around 50. The other experiment settings and critical point for
judging if a system fails were the same as those presented in the previous section.
Table 9 summarizes the results.
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Table 9: Performance of different reputation systems. The values in the columns
indicate the percentage of users of the corresponding behavior type.

System Selfish Spamming Misleading

eBay > 80a 70 60

Average > 80 60 60

OnlyLast > 80 40 < 20

BlurredSquared > 80 80 > 80

Beta > 80 > 80 > 80

Perseus > 80 80 70

aThe system is resistant up to x% of this type dishonest users.
The rest are honest users.

The results indicated that all the reputation systems were able to stand against
dishonest users, except the OnlyLast system, which was weak against spamming
users and vulnerable to misleading users. However, it is hard to determine whether
a system is effective using the measurement number of transactions of widgets alone.
To this end, the false detection rate of widgets was also considered in this experiment.

The false detection rate and the number of transactions of honest widgets in the
reputation systems with certain amount of dishonest users are illustrated in Fig-
ures 14 - 19. Figures 14 and 15 show the results when 80% of all users are selfish.
As the results indicated, the false detection rate of honest widgets in all reputation
systems converged to 0 after 1000 iterations, except the eBay system, in which about
10%.honest widgets were regarded as malicious widgets. Figures 16 and 17 illustrate
the results when 70% of all users are spamming. In this case, the Average system
and the OnlyLast system failed to distinguish honest widgets from malicious ones.
At the same time, the number of transactions of honest widgets decreased towards
0. Among all the reputation systems, the Beta system was the only one which can
correctly detect honest widgets. Figures 18 and 19 demonstrate a similar situation
when 30% of all users are misleading.
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Figure 14: False detection rate of honest widgets in reputation systems with 80%
SELFISH users.

Figure 15: Number of transactions of honest widgets in reputation systems with
80% SELFISH users.
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Figure 16: False detection rate of honest widgets in reputation systems with 70%
SPAMMING users.

Figure 17: Number of transactions of honest widgets in reputation systems with
70% SPAMMING users.
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Figure 18: False detection rate of honest widgets in reputation systems with 30%
MISLEADING users.

Figure 19: Number of transactions of honest widgets in reputation systems with
30% MISLEADING users.
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6.3 Recommendations

Table 10 summarizes the evaluated reputation systems and their strengths as well as
weaknesses; see Section 6.1.1 for the definitions of behavior models that are used in
the table. It also provides some recommendations on selecting appropriate systems
for widget sharing communities with different requirements.
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7 Conclusion

This study focused on the simulation of an online widget sharing community, consist-
ing of users and developers where users download the widgets created by developers
and provide feedback about the widgets after each transaction. A custom scenario
was presented to describe the indirect interactions between users and developers,
i.e., via widgets, and formed a simulation environment using statistical models de-
termined by real data. In this thesis, six reputation systems were compared and
evaluated within the simulated widget sharing environment to study their effective-
ness in resisting the attacks from misbehaving developers and users, providing reli-
able reputation information of widgets to users, and encouraging users to download
more good widgets. In more detail, through empirical evaluation, the experiment
results show that:

1. The examined systems are able to handle attacks from dishonest developers if
all the users behave honestly.

2. All of the examined reputation systems are susceptible to attacks from selfish
users.

3. The OnlyLast system is vulnerable to spamming and misleading users.

4. The Beta system is able to provide reliable reputation information of widgets
to users, which in turn can probably increase the downloads of honest widgets.

5. The Perseus system supports the highest downloads of honest widgets among
the evaluated systems.

The following questions serve as suggestions for future work:

1. Is it feasible to integrate open multi-agent systems into this simulation so that
we can form a more realistic environment which allows developers and users
to freely join and leave the virtual widget sharing community?

2. Are there other reputation systems that can be included into this simulation?
It should be interesting to integrate more systems into the simulation to better
understand their strengths and weakness. This better understanding could
provide the possibility to combine the good parts of different systems, and to
design a system which works more effective to the widget sharing communities.
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3. Is it possible to distinguish between honest users and misbehaving users in the
community? How to treat them differently?

The first two questions can be regarded as possible extensions of the simulation
work. The third one is more related to a cross work from both computer science
and social aspects. It would be useful to investigate this problem in order to improve
the trust among users and between users and developers. In summary, facing with
the problems proposed above, both empirical and theoretical studies are needed in
order to find out ideal solutions for each problem instance.
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